Коснуться невидимого, услышать неслышимое - Страница 6


К оглавлению

6

Рис. 3. Сенсорные образования в подушечках лап домашней кошки.

Цифры — процент встречаемости. Ясно, что существует множество разновидностей рецепторных структур. Есть точка зрения, согласно которой уровни развития и сложности структур образуют последовательность от свободных нервных окончаний к специализированному рецептору — тельцу Пачини, показанному на рис. 4.


Рис. 4. Тельце Пачини (схема) — поперечный разрез.

1 — капсула, 2 — чувствительное окончание, 3 — перехват Ранвье. Капсула имеет слоистое строение, а центральный стержень, представляющий собой чувствительное нервное волокно, со всех сторон «одет» в капсулу


Вторичные сенсорные клетки (или сенсорные эпителиальные клетки) отличаются тем, что, являясь модифицированными эпителиальными клетками, контактируют с одним или несколькими афферентными нейронами, несущими информацию о раздражителе к центрам мозга. Это вкусовые клетки (рис. 6, А), многие так называемые волосковые клетки, расположенные, например, в статоцистах — органах равновесия, различные слуховые рецепторы (рис. 6, Б). В таблице прослеживается соотношение структуры и функции различных рецепторных образований. Это, однако, их основная функция. Помимо нее, как уже отмечалось, каждый вид рецепторов может воспринимать и другие виды раздражителей. Тактильные рецепторы, например, реагируют на звуки и вибрации, вкусовые рецепторы возбуждаются также механическим и температурным стимулом, а зрительные рецепторы при сильном механическом раздражении вызывают ощущение вспышки света. Таким образом, мы сталкиваемся здесь с одним из кардинальных вопросов физиологии органов чувств — с сенсорной специфичностью. Очевидно, что только разрешив его, мы найдем ответы на поставленные выше вопросы о функциональной предопределенности различных рецепторов.


Типы рецепторов кожи и внутренних органов, их локализация и возможная функция


В 1826 г. немецкий исследователь И. Мюллер опубликовал выдвинутую им доктрину о специфической энергии органов чувств. Согласно основному положению этой доктрины, чувствительность каждой возбуждаемой стимулом системы, качество ощущения, вызываемого раздражителем, зависят не от свойств действующего внешнего агента, а от свойств «специфической чувствительности субстанции органов чувств». «Энергии света, темноты или цвета, — писал он, — не принадлежат внешним предметам, причине возбуждения, они присущи самой субстанции зрения» (цит. по: Сомьен Дж. Кодирование сенсорной информации. М.: Мир, 1975, с. 43).

И. Мюллер первый утверждал, что любое раздражение зрительного нерва вызывает зрительное ощущение. Мы знаем теперь также, что температурные рецепторы реагируют, например, на химическое раздражение ментолом или давление, инициируя ощущение холода, а слуховой нерв можно раздражать электрическим током и получить слуховое ощущение. Перечисление подобных примеров можно продолжить. И сегодняшнее обращение к взглядам Мюллера обусловлено несомненным его влиянием на последующие исследования ученых, его глубоким пониманием того, что качество каждого сенсорного раздражителя зависит от активности и специфических свойств определенного сенсорного образования. Фактически в настоящее время, несмотря на более чем 150-летнюю историю вопроса, изучение сенсорной специфичности продолжается и еще далеко от своего окончательного разрешения.

Рассмотрим два аспекта сенсорной специфичности: 1) «локальный знак», показывающий место нахождения стимула в пространстве (для дистантных систем) и 2) модальность, т. е. качество стимула — свет, звук, прикосновение. Основное допущение, которое делали сторонники и последователи закона специфических энергий, состояло в том, что предусматривалось наличие ряда нервных окончаний, чувствительных к различным, но характерным для каждого типа окончаний видам стимуляции (в коже, например, тепло, холод, прикосновение и боль).

В 1862 г. немецкий физик и врач Г. Гельмгольц расширил представления И. Мюллера, высказав предположение о том, что каждое волокно слухового нерва вызывает ощущение звука определенной высоты. Такая детализация нервных элементов, создающих мозаику восприятия, неизбежно привела к представлению о наличии «линий связи» нейронов мозга с определенными периферическими нейронами. И когда к 1884 г. гистологами были открыты и описаны различные нервные окончания и рецепторные органы в коже, а также показаны дискретная природа кожной чувствительности и различия модальности раздражителей в определенных точках кожи, подавляющее большинство исследователей пришло к выводу, что должна существовать непременная зависимость между строением концевых рецепторных органов и специфической энергией органов чувств.

Рис. 5. Рецепторные клетки обонятельного эпителия млекопитающих.

1 — реснички, 2 — рецепторные клетки с аксонами (4), окруженные опорными клетками (3).


Рис. 6. Схемы вкусовой (А) и наружной волосковой слуховой клетки (Б).

А: 1 — рецепторная клетка, 2 — окончания чувствительного нерва. Прерывистые линии обозначают электрический ток, идущий при стимуляции. Б: 1 — стереоцилии — волоски на рецепторной поверхности клетки, 2 — базальное тельце волоска киноцилии, 3 — ретикулярная мембрана, 4 — пластинчатое тельце, 5 — плазматическая мембрана клетки, 6 — митохондрия, 7 — субмембранные пластинки, 8 — пальцевидный отросток, 9 — ядро, 10 — тельце Рециуса с множеством митохондрий, 11 — афферентное (передающее к мозгу) нервное окончание, 12 — эфферентное (передающее в клетку) нервное окончание, 13 — опорная клетка Дейтерса, от которой к поверхности кортиевого органа идет пальцевидный отросток.

6