Несмотря на то что волокна в периферических нервах идут в непосредственной близости, активность одного волокна весьма мало влияет на соседние волокна благодаря специальному изолирующему слою, создаваемому так называемыми шванновскими клетками, или клетками-сателлитами (в центральной нервной системе клетки-сателлиты называют глией). Природа взаимоотношений нейронов и сателлитов до настоящего времени не представляется ясной.
Истинное взаимодействие между самими нейронами осуществляется в области контактов, называемых синапсами. Аксонная веточка одного нейрона подходит к дендриту, телу или аксону другого нейрона. В зоне контакта остается узкая щель, называемая синаптической. Типичный нейрон центральной нервной системы может иметь до 10 000 синапсов и получать информацию от тысяч других нейронов.
Рис. 10. Схема нейрона с конечной ветвью аксона, образующего синаптический контакт с дендритом.
А — один синаптический контакт; Б — несколько синаптических контактов Контакты являются возбуждающими (в) и тормозными (т). На возбуждающем окончании может также заканчиваться пресинаптическое тормозное окончание (пт). Между окончаниями показаны части глиальных клеток (г). Значительная часть синапсов сосредоточена на дендритах.
Как уже отмечалось, при достаточной величине рецепторного потенциала возникает нервный импульс, распространяющийся по волокнам на большие расстояния. Передача импульсов определяется разностью потенциалов по обе стороны мембраны волокна и является следствием изменений ее ионной проницаемости. Когда нервный импульс доходит до конца аксона, он вызывает усиленное выделение из окончаний аксона химического агента — медиатора. Можно провести аналогию между действием медиатора на следующий нейрон с действием стимула на рецепторную клетку. Если медиатор выделяется в достаточном количестве, он вызывает постсинаптический потенциал. В соответствии с типом нейрона (возбудительный или тормозный) различаются и типы медиаторов, вызывающих эффекты возбуждения или торможения.
В зоне соединения нейронов происходит трансформация, перекодирование нервного сигнала. У млекопитающих к каждой постсинаптической клетке подходят окончания от множества других клеток. И тормозные, и возбуждающие синапсы сосуществуют бок о бок на одних и тех же клетках. Считается, что торможение, возникающее после синапса, — это мощное противодействие возбуждению из любого источника, а торможение, возникающее до синапса, — это как клапан, который выключает только часть потока, но дает возможность пройти другой его части.
Итак, нейроны осуществляют передачу и обработку информации. И если передача осуществляется в основном в двоичной форме, по закону «все или ничего», то обработка, вероятно, идет в аналоговой форме, поскольку к одной постсинаптической клетке подходят сотни окончаний, выделяющих медиатор. Возникающая постсинаптическая реакция в результате является градуальным непрерывным процессом: двоичный импульсный код пресинаптических волокон преобразуется в аналоговую форму в синапсе, а затем в аксоне постсинаптической клетки опять превращается в импульсный код.
Двойной — импульсный и аналоговый — способ кодирования имеет несомненные преимущества. Импульсная передача надежна, быстра и точна. Синаптическое преобразование обусловливает изменение частоты, отражающее действия миниатюрного нелинейного аналогового устройства, в котором входящие события взвешиваются, а выходная система дает оценку этого взвешивания. В таких устройствах возможны различные виды трансформаций. Это усиление, которое может изменить объем афферентации. Это также переключение направления афферентации. Кроме того, это фильтрация, снижающая шум или изменяющая вес отдельных составляющих афферентного потока, а в предельном случае — полное его подавление. Это также извлечение определенных свойств потока за счет исключения избыточных деталей (другими словами, усиление контраста). И, наконец, это изменение шкалы времени за счет изменений постоянных времени основного процесса.
Богатейшая картина внешнего мира, преобразованная в периферических рецепторных структурах сенсорных систем, приводит в действие механизмы мозга, деятельность которых завершается трансформацией чувственного «изображения» — ощущения в акт восприятия. Результаты внешнего воздействия преобразуются в определенный код, носителем которого являются нейроны. Они генерируют электрические разряды — импульсы или медленные электрические потенциалы. Весь разнообразный поток раздражителей, которые воспринимают органы чувств из внешней среды, заключен в этих двух типах электрических сигналов. Каким бы совершенством и разнообразием не были бы представлены периферические структуры, ориентировка в огромном и удивительном внешнем мире была бы невозможна без участия множества нейронов — этих маленьких кирпичиков в здании сенсорного восприятия.
Для понимания специфической, уникальной функции нейронов и смысла передаваемых ими электрических сигналов, в которых заключена информация от соответствующих органов чувств, необходимо решить ряд чрезвычайно сложных задач. Требуется, в частности, проследить пути распространения электрических сигналов в различных структурах мозга, оценить преобразования, которые эти сигналы претерпевают на своем пути, выяснить, какими изменениями в сенсорной или двигательной функции они при этом сопровождаются. Следует подчеркнуть, что при решении перечисленных задач исследователи сталкиваются со множеством трудных методологических и методических вопросов. И только совместными усилиями ученых, представляющих различные области знания, секреты механизмов сенсорного восприятия будут открыты и изучены.