Вопрос о месте воздействия весьма важен. Если оно одно и то же, указанные различия, вероятнее всего, зависят от разных действующих факторов. Дополнительные сведения о месте воздействия ультразвуком и, следовательно, о действующих факторах, дают клинические наблюдения. Речь идет о больных, утративших слух из-за разрушения рецепторного аппарата лабиринта патологическим процессом, но сохранивших функционально способными волокна слухового нерва. Такие больные в естественных условиях глухи, но у них можно вызвать слуховые ощущения при раздражении слуховых волокон электрическим током. Оказалось, что, несмотря на отсутствие слуха, больные испытывают слуховые ощущения в условиях действия на ушной лабиринт ультразвуковых импульсов или ультразвука, модулированного по амплитуде звуковым сигналом. Следовательно, можно предполагать, что ультразвук, как и электрический ток, активирует сохранившиеся волокна слухового нерва.
Это наблюдение соответствует результатам опытов на животных с предварительно разрушенным рецепторным аппаратом. Было показано, что при таких условиях ультразвуком активируются слуховые нервные волокна. Подробнее к результатам этих исследований мы вернемся в разделе о слухе.
Таким образом, клинические данные в сопоставлении с экспериментами на животных свидетельствуют о том, что ультразвук оказывает активирующее влияние на волокна слухового нерва. При электрическом раздражении слуховых волокон человека наименьший порог обнаружен при длительности электрического прямоугольного импульса 1 мс и больше. Случайное это совпадение с такой же величиной при действии ультразвука или отражение какой-то общей закономерности обоих стимулов? В действии электрического тока на волокно нет аналогии с механическим раздражением, которое ранее выступало действующим фактором ультразвуковой стимуляции. Однако тогда речь шла о пороговой стимуляции. А при нарушении функции рецепторного аппарата пороги ответных реакций на ультразвук возрастали и у животных, и у человека. Не исключено поэтому, что в таких условиях выступает иной действующий фактор. Возникло предположение о преобразовании в тканях ультразвукового импульса в электрический сигнал, который и вызывает слуховое ощущение. В пользу предположения служат данные литературы о так называемом механо-электрическом эффекте в биологических тканях. Суть его заключается в том, что при действии ультразвука на живую ткань, особенно на костную, в ней возникает электрический сигнал. В результате было установлено, что эффекты ультразвука пороговых и умеренных надпороговых интенсивностей (до 35—40 дБ) связаны главным образом с адекватным механическим фактором. При больших интенсивностях проявляется другой фактор, предположительно механо-электрический.
Сопоставление фокусированного ультразвука как раздражителя с другими адекватными или искусственными стимулами целесообразно рассматривать не только с целью выявления действующих факторов ультразвука, но и для изучения различий ультразвуковой активации по сравнению с воздействием другими стимулами. В некоторых случаях несомненны преимущества ультразвука. Какие именно? Действие на строго ограниченную область, размеры которой можно изменить в широких пределах и выбрать произвольно; количественно контролируемое измерение интенсивности, широкий выбор режимов воздействия, от стимулирующего до функционально угнетающего или разрушающего. В процессе выбора оптимального режима иногда можно использовать действующий фактор, нужный в одном случае, и отказаться от использования его — в другом. Пожалуй, только фокусированный ультразвук обладает уникальной способностью воздействовать на глубинные структуры организма без какого-либо влияния на окружающие ткани. Преимущество ультразвуковой активации делает наиболее плодотворным изучение общих и специфических закономерностей в работе периферического аппарата сенсорных систем.
В зависимости от режима и места воздействия ультразвуком у животных и человека можно вызвать строго определенные функциональные реакции, угнетение этих реакций и разрушение тканей. В связи с этим особое значение приобретают вопросы не только оптимальных режимов, но и безопасности.
Фокусированный ультразвук частотой несколько мегагерц — неспецифический стимул, поскольку в организме животных и человека отсутствуют органы чувств, способные производить или улавливать механические колебания такой частоты. Даже «классические ультразвуковые животные» — летучие мыши и дельфины — способны излучать и воспринимать ультразвук лишь до сотен килогерц. Речь идет, таким образом, о неспецифических режимах облучения ультразвуком, причем с целью не только получить определенный эффект, но и многократно его воспроизвести без какого-либо вредного влияния на облучаемую структуру или организм в целом.
Фокусированный ультразвук большой интенсивности впервые стали использовать в технике для смешивания нерастворимых друг в друге жидкостей, очистки загрязненных деталей, для нагревания ограниченных объемов среды и т. д. В биологии и медицине подобные режимы воздействия, только при меньшей интенсивности ультразвука, использовали для разрушения биологических тканей, в частности патологически измененных структур мозга. Эта наиболее очевидная область применения ультразвука получила признание не только в эксперименте, но и в клинике, например в нейрохирургии. Другая, сравнительно новая область, в которой успешно используется способность ультразвука вызывать деструкцию биологических тканей, — офтальмология. Фокусированным ультразвуком пытаются задержать отслойку сетчатки, образуя в ней очаги асептического воспаления, фиксирующие сетчатку к соседним оболочкам и препятствующие тем самым ее дальнейшей отслойке. Облучение ультразвуком хрусталика глаза ускоряет формирование катаракты. Формирование, развитие, или, как говорят офтальмологи, созревание, катаракты — необходимая предпосылка для ее успешного оперативного лечения. Как правило, такое созревание завершается за несколько месяцев. Облучение хрусталика фокусированным ультразвуком ускоряет этот процесс до нескольких минут.